Kubernetes Summit 2020 - iThome

基於Kubernetes與Docker之 容器化智慧預測保養系統之全廠導入

(Factory-wide Deployment of IPM_C based on Kubernetes and Docker)

講師:洪敏雄

中國文化大學資訊工程學系 教授

洪敏雄、謝昱銘、鄭芳田 國立成功大學 智慧製造研究中心 Intelligent Manufacturing Research Center (iMRC) National Cheng Kung University

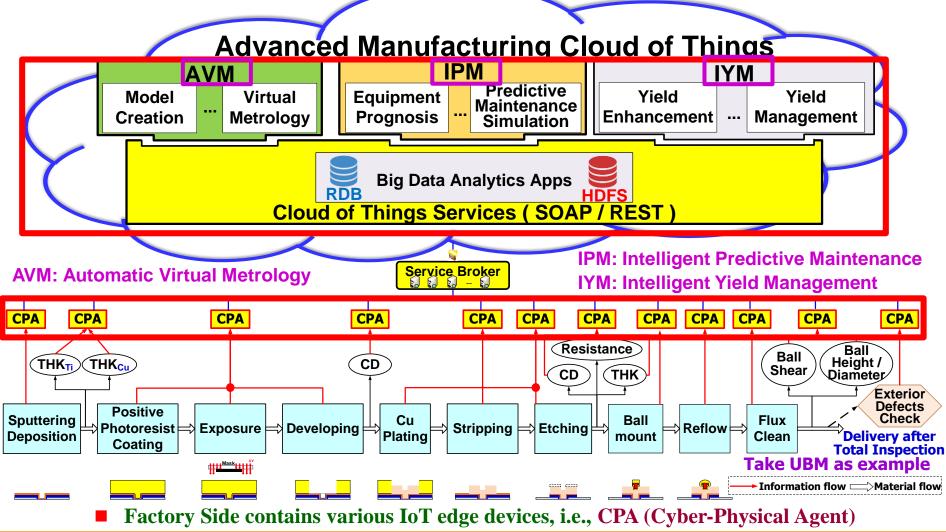
September 27, 2020

演講大綱

- 智慧製造平台-基於容器技術之先進製造物聯雲(AMCoT_C)
- 容器化智慧預測保養系統(IPM_C)導入面板製造廠之成果
- 基於Kubernetes與Docker之IPM_C全廠導入實踐作法
- 結語與展望

智慧製造平台

基於容器技術之先進製造物聯雲 $(AMCoT_C)$



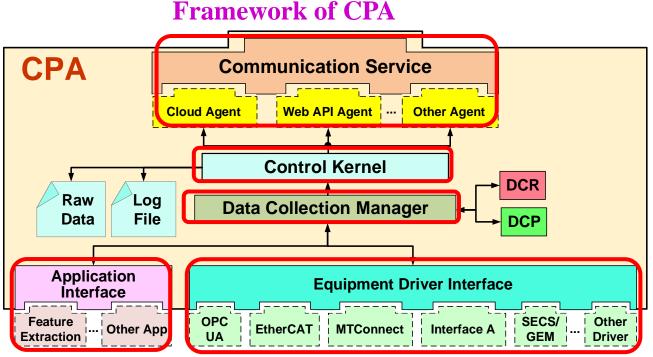
智慧製造平台-先進製造物聯雲(AMCoT)

Cloud Side contains various Intelligent CMfg Services

工廠端物聯網裝置CPA

(Cyber-Physical Agent)

• Communication Service:


Facilitate communications with different cyber systems (e.g., CPAs and cloud services) over network, particularly the Internet.

• CPA Control Kernel:

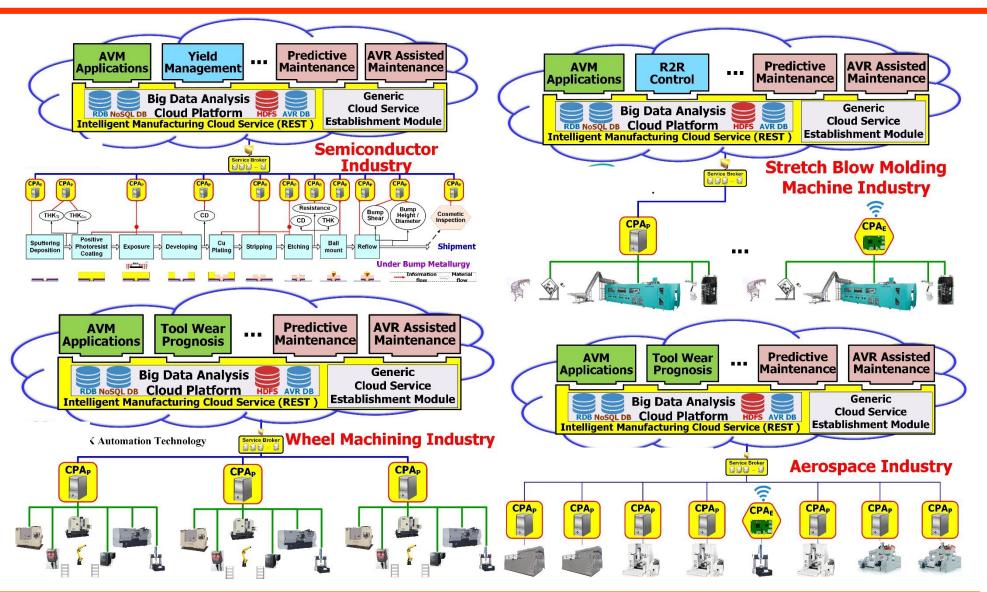
The core for communications among all modules of CPA so as to serve as the bridge between cyber and physical worlds.

- Data Collection Manager: Handle and manage data collection through Equipment Driver.
- Application Interface (AI):

Allow CPA to add various PAMs (Pluggable Application Modules)(e.g., data preprocessing, feature extractions, predictive maintenance applications, etc.)) in a plug-and-play manner.

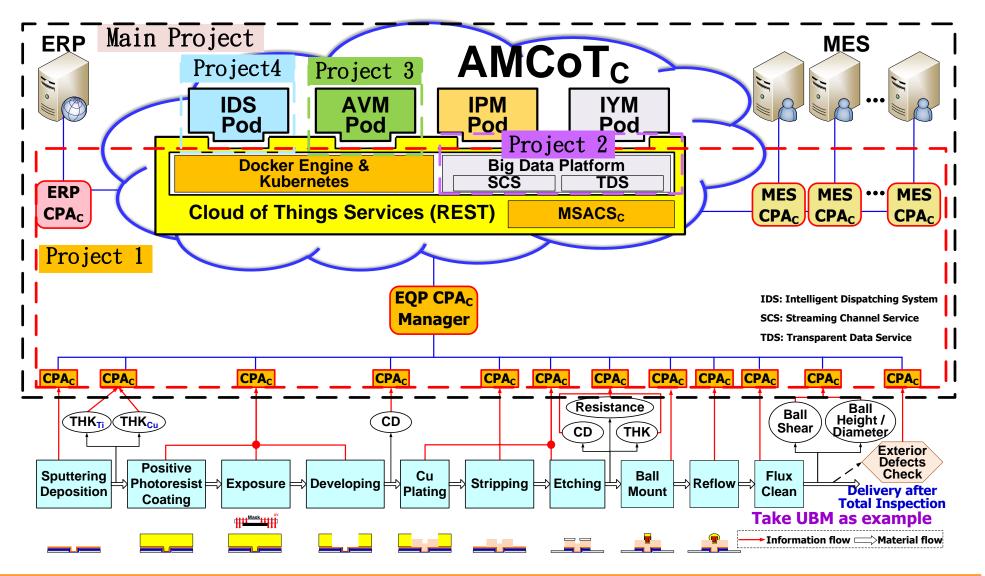
• Equipment Driver:

Enable CPA to communicate with various kinds of sensors, devices, machines, and equipment for the purpose of data collection.



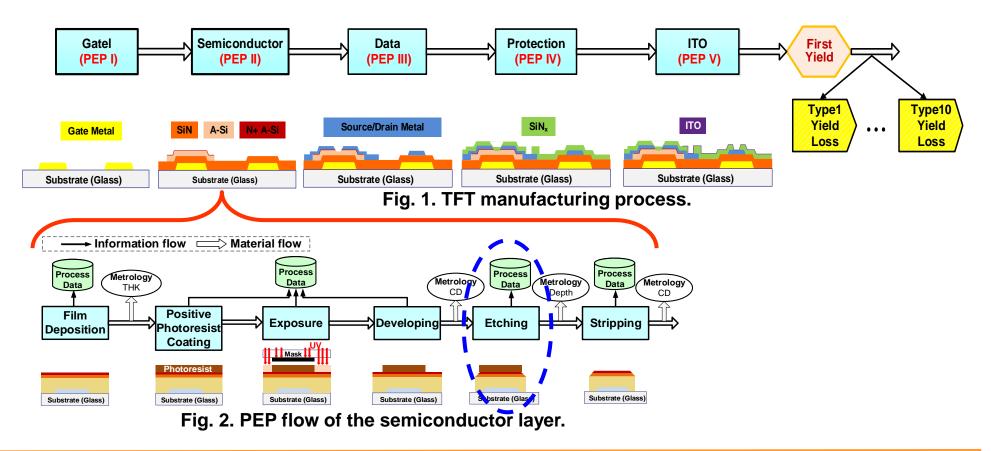
Taiwan Patent : I225606 US Patent : 7.162.394

Japan Patent : 4303640


AMCoT之製造產業應用

基於容器技術之智慧製造平台AMCoT_C

容器化智慧預測保養系統(IPM_C) 導入面板製造廠之介紹



薄膜電晶體製程

(TFT Manufacturing Process)

The TFT process consists of five layers: gate, semiconductor, data, protection, and indium tin oxide (ITO) layers. Each layer includes the socalled photo engraving processes (PEP) as shown in Fig. 2.

乾蝕刻製程之渦輪真空幫浦(Turbo Pump) (1/2)

- 乾蝕刻:乾蝕刻是以電漿(因此又稱 電漿蝕刻)來進行薄膜蝕刻的一種技 術。又分為: 溅鏡(Sputter)及純化 學蝕刻(Pure Chemical Etching)。
- 電漿刻蝕是現今技術中唯一能極有 效率地將此工作在高良率下完成的 技術,因此電漿刻蝕便成為半導體 製造以及TFT LCD Array製造中的 主要技術之一。
- Fig.3為乾蝕刻機台之CEM圖,<u>其中</u>
 <u>Turbo pump協助在製程中穩定壓</u>
 <u>力、保持生產品質</u>。

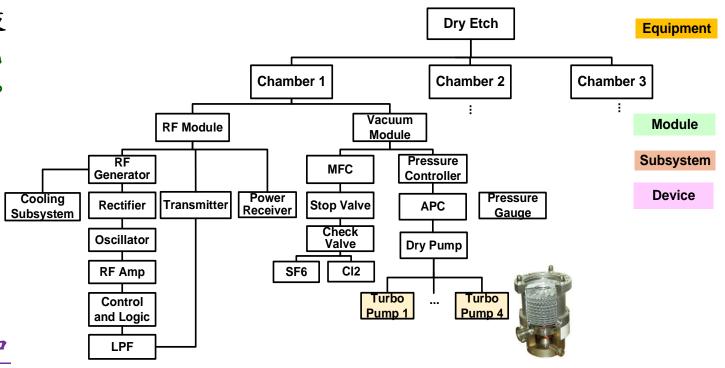


Fig.3. Common Equipment Model(CEM) of Dry Etch

乾蝕刻製程之渦輪真空幫浦(Turbo Pump) (2/2)

- 由於乾蝕刻過程會產生揮發物使得Turbo pump在抽Chamber內的氣體進行維持壓力作 業時,一併將揮發物吸出,如Fig.4紅色方框 所示。
- 如此一來,會使得Turbo pump葉片上沉積汗 染分子,致軸偏度歪斜進而pump腔體炸裂損 壞到Dry Etch機台本身,造成極大的損失。
- 因此可透過IPM系統針對Turbo pump之健康 狀態進行嚴密的監控,避免腔體炸裂所造成的 損失。

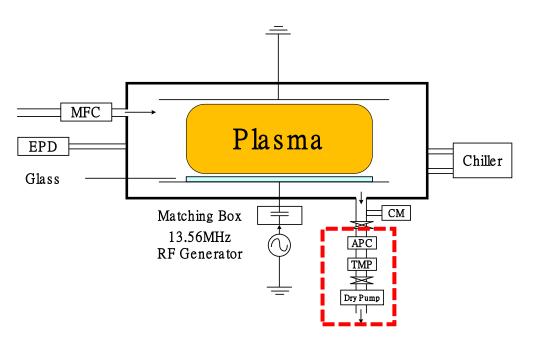
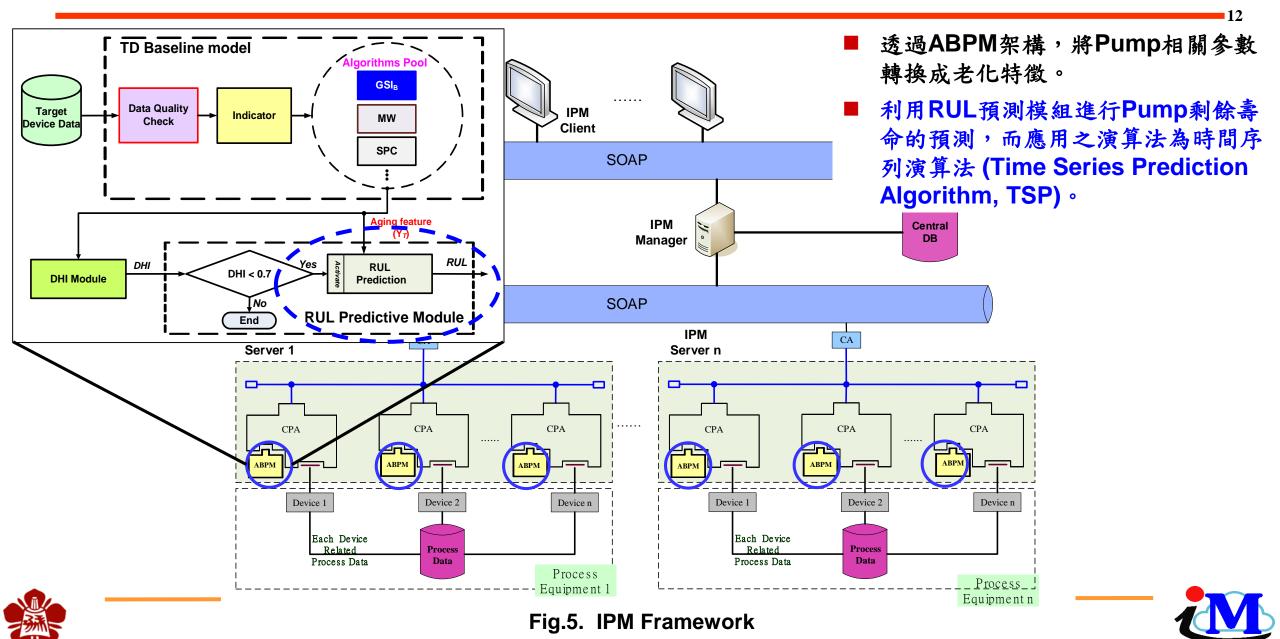
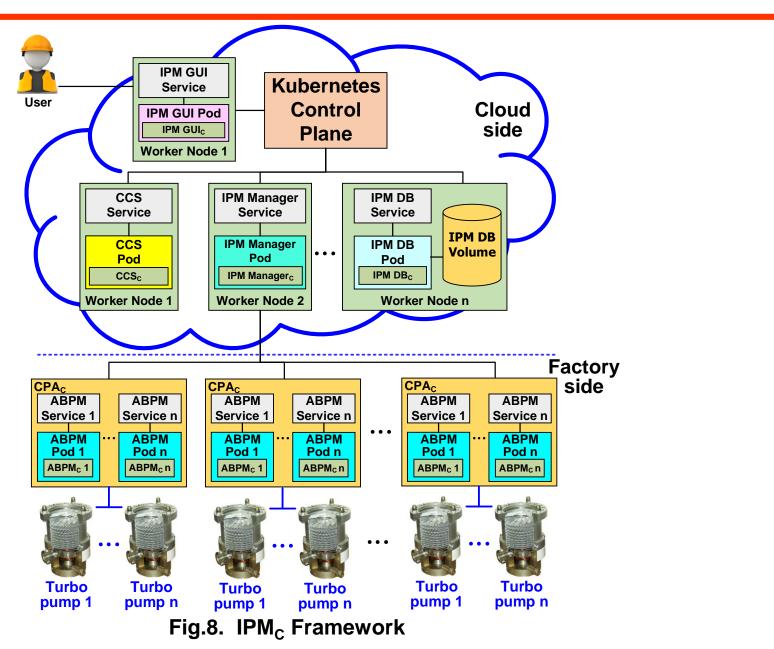



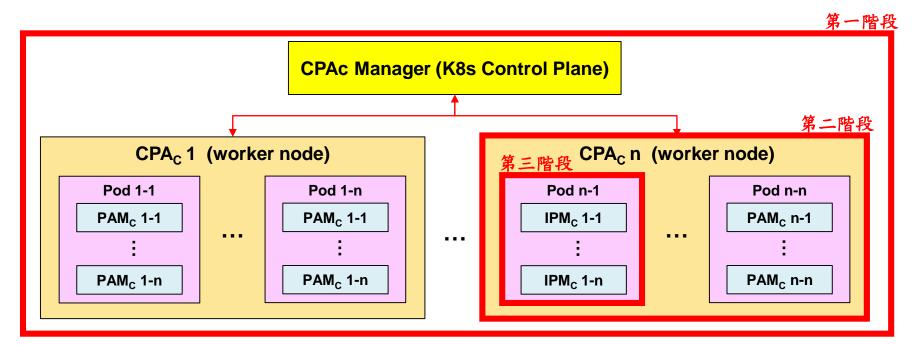
Fig.4. Dry Etch Chamber 機構圖

智慧型預測保養系統ABPM


IPM_C系統全廠導入之利基

- 由於整廠共有100多個Turbo pump需被監控,若以原IPM架構,監控一個Turbo pump需要一台CPA,將需要大量的硬體及維護成本,手動維運這些IPM程式也是複雜挑戰的工作。
- 改以基於Kubernetes與Docker之IPM_c進行全廠導入,可帶來許多好處:
 - ➢ 易於採用Microservice架構實現IPM,可個別對IPM之組成元件進行更新與擴展。
 - ▶ 利用Images打包IPM各個組成元件與所需執行環境,提升移植性。
 - ▶ 利用Container提升IPM程式之隔絕性。
 - ▶ 利用自動化腳本減少部署IPM之複雜度,達到快速部署。
 - ▶ 一個節點(CPA)可同時部署許多個IPM_c,大幅節省硬體成本。
 - 利用Kubernetes自動化維運IPM_c: Self-healing, Failover, Resource Limitation, etc.

基於Kubernetes與Docker之 IPM_C全廠導入實踐作法



IPMC之三階段部署策略

■ 部署IPM_C之三個階段策略:

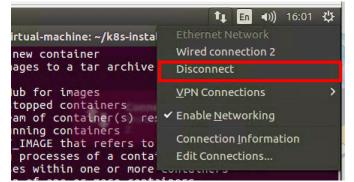
- ▶第一階段:離線安裝Kubernetes與Docker環境
- ▶第二階段:離線部署Cluster
- ▶ 第三階段:離線部署IPM_C

第一階段: 離線安裝Kubernetes與Docker環境

Windows Node安裝方法 (無Internet)

- 1. 在主機上安裝Windows Server 2019 Standard:
- 2. 將安裝包下載至儲存裝置中:
- 3. 將安裝包複製到離線主機中,在安裝包目錄下執行以下指令:
 - #以Administrator執行

install-k8s-for-windows-server-withtout-internet.bat



Ubuntu Node安裝方法 (無Internet)

- 1. 在主機上安裝Ubuntu OS LTS:
- 2. 將安裝包下載至儲存裝置中:
- 3. 將安裝包複製到離線主機中,並暫時關閉主機的網路,直到安裝結束:

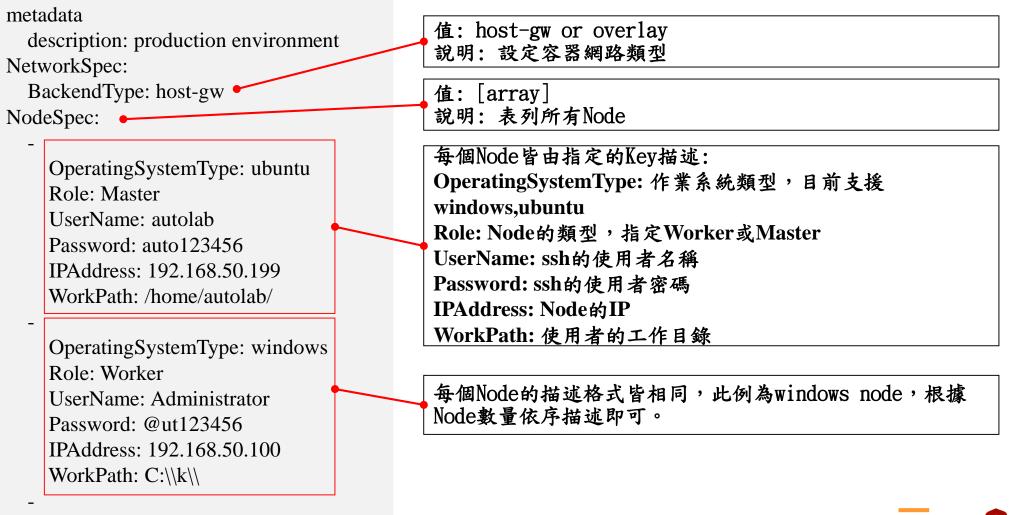
4.在安裝包目錄下執行以下指令:

\$ su root
\$
.../install-k8s-for-ubuntu-server-without-internet.sh

5. 恢復網路。

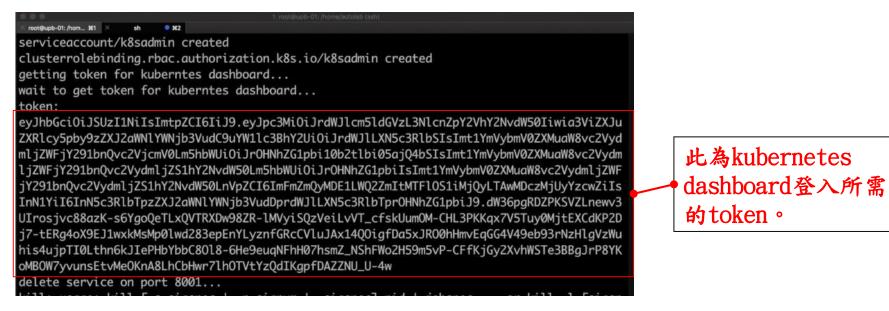
第二階段:

離線部署Kubernetes Cluster



Kubernetes Cluster部署 (1/2)

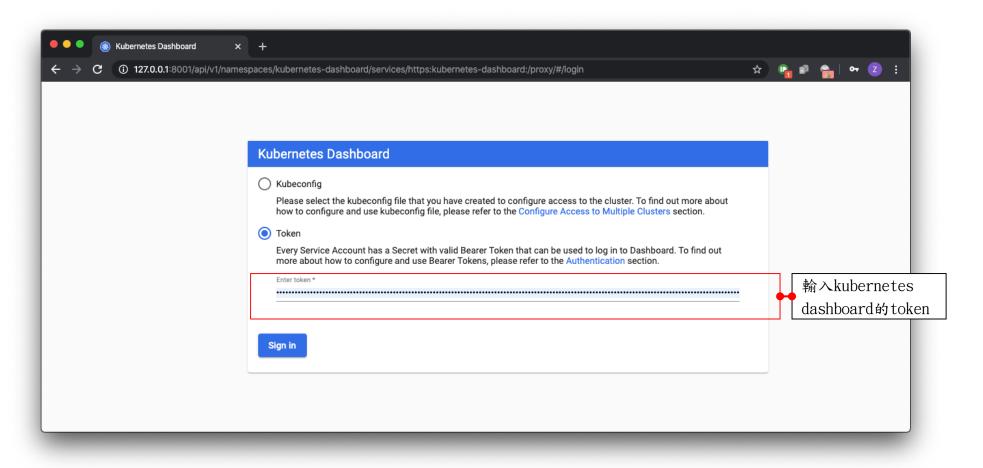
1. 修改環境設定檔(檔名為. env):



Kubernetes Cluster部署 (2/2)

2. 執行自動佈署腳本:在Master Node上執行以下指令

- \$
 ../init-without-internet.sh
- 3. 等待佈署完成,可看到以下畫面,取得登入kubernetes dashboard登入所需的token :



檢視部署成果(1/2)

1. 打開Kubernetes Dashboard:

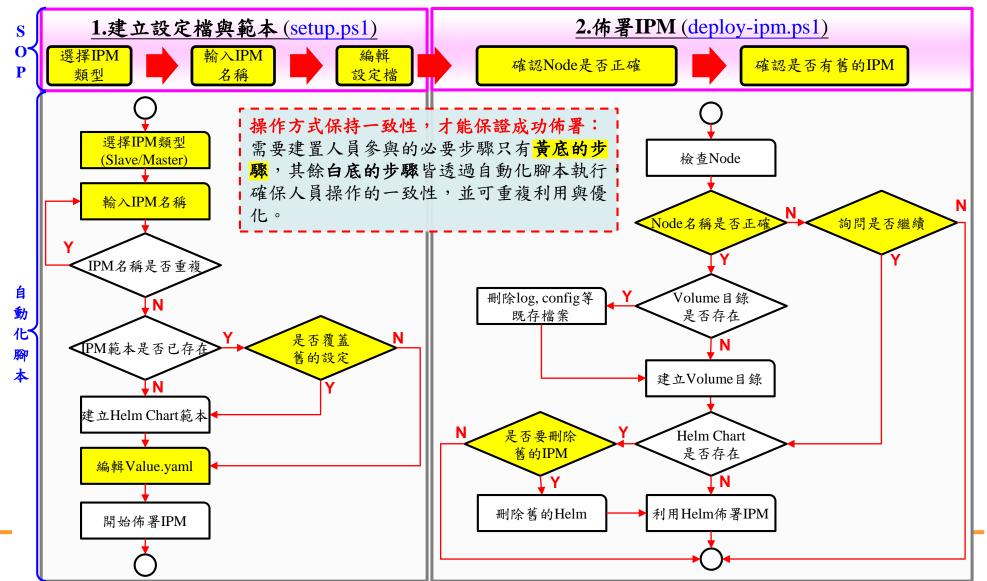
http://127.0.0.1:8001/api/v1/namespaces/kubernetes-dashboard/services/https:kubernetes-dashboard:/proxy/#/login

檢視部署成果(2/2)

2. 可在Node分頁看到剛剛部署的所有Node, 並且狀態都是顯示Ready:

🛞 kubernetes			Q Search									+ 🌲	e
■ Cluster > Nodes													
Cluster	Noc	les										÷	•
Cluster Roles		Name 个		Labels		Ready	CPU requests (cores)	CPU limits (cores) Memory requests (bytes)	Memory limits (bytes)	Age		
Namespaces Nodes Persistent Volumes	0	upb-01			tes.io/arch: amd64 tes.io/os: linux Show all	True	750.00m (18.75%)	100.00m (2.50%)	120.00Mi (1.53%)	220.00Mi (2.81%)	4 months		:
storage Classes	⊘	upb-02			tes.io/arch: amd64 tes.io/os: linux Show all	True	100.00m (2.50%)	100.00m (2.50%)	50.00Mi (0.64%)	50.00Mi (0.64%)	4 months		:
Nar NOUE分頁 default ~	⊘	upb-03			tes.io/arch: amd64 tes.io/os: linux Show all	True	100.00m (2.50%)	100.00m (2.50%)	50.00Mi (0.64%)	50.00Mi (0.64%)	7 days		:
Overview	⊘	upb-04			tes.io/arch: amd64 tes.io/os: linux Show all	True	100.00m (2.50%)	100.00m (2.50%)	50.00Mi (0.64%)	50.00Mi (0.64%)	4 months		:
Workloads Cron Jobs	⊘	upb-05			tes.io/arch: amd64 es.io/os: linux Show all	True	100.00m (2.50%)	100.00m (2.50%)	50.00Mi (0.64%)	50.00Mi (0.64%)	4 months		:
Daemon Sets Deployments Jobs	⊘	upb-06	● 所有的	Node	es.io/arch: amd64 es.io/os: linux Show all	True	↓ 狀態都是 Ready: True	(2.50%)	120.00Mi (1.53%)	220.00Mi (2.81%)	4 months		:
Pods Replica Sets	⊘	win-jtrke7tdm3t			tes.io/arch: amd64 tes.io/os: windows	True	0.00m (0.00%)	0.00m (0.00%)	0.00 (0.00%)	0.00 (0.00%)	a month		:
Replication Controllers Stateful Sets Discovery and Load Balancing	ø	win-m71hkpoqaja			tes.io/arch: amd64 tes.io/os: windows	True	0.00m (0.00%)	0.00m (0.00%)	0.00 (0.00%)	0.00 (0.00%)	4 months		* *
Ingresses Services	⊘	win-qa8ssoqgupt			tes.io/arch: amd64 tes.io/os: windows	True	0.00m (0.00%)	0.00m (0.00%)	0.00 (0.00%)	0.00 (0.00%)	5 days		:

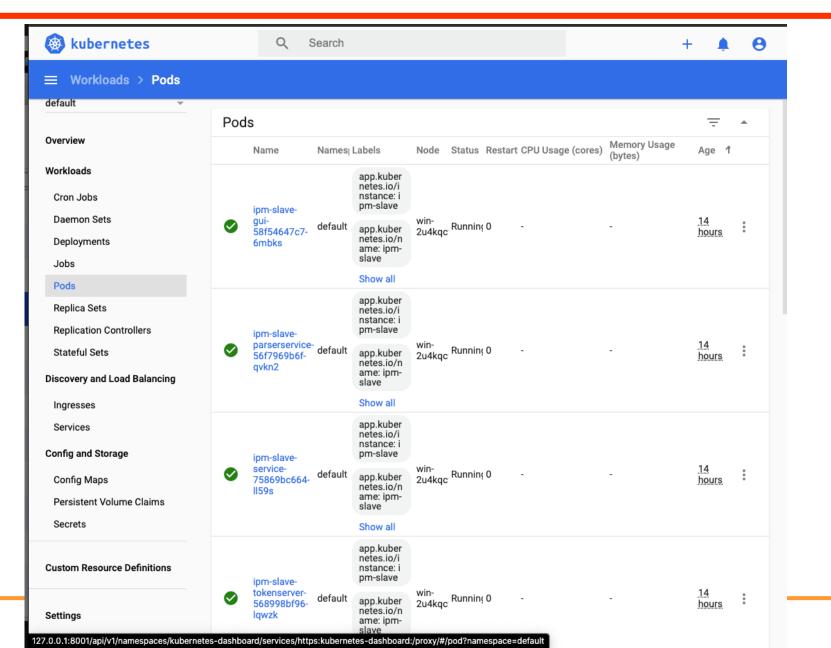
第三階段: 離線部署IPM_C



IPM 企離線安裝流程 (1/2)-標準化安裝流程之設計

26

為了減少建置人員的安裝問題與人為疏失,並利於持續優化安裝流程,必須將安裝流程SOP化,並透過自動 化腳本執行。IPM的安裝流程分成兩個步驟:1.建立設定檔與範本、2.佈署IPMc:


大化文质

IPM_{C} 離線安裝流程 (2/2)-自動化腳本隱藏技術細節之效益

	為了減少建置人員的 安裝問題與人為疏失,並利於持續優化安裝流程 ,必須將安裝流程SOP化,並透過自動 化腳本執行。IPM的安裝流程分成兩個步驟:1.建立設定檔與範本、2.佈署IPMc:								
S O P	1.建立設定檔與範本 (setup.ps1) 2.佈署IPM (deploy-ipm.ps1) 選擇IPM 頻型 輸入IPM 名稱 編輯 資型 輸入IPM 名稱 過定檔								
		選擇IPM 類刑 五正九四,日	裁建置人員不必理 作簡化成選擇題						
		安裝教育訓練項目	Before	After	N				
	Y	學習Helm指令	必須	不需要					
自動化腳		學習Kubernetes指令	必須	不需要					
		學習IPM系統的環境建置設定 與限制	必須	不需要					
本		學習如何建立IPM	必須	不需要					
	建1	學習如何刪除IPM	必須	不需要					
		學習如何重建IPM	必須	不需要					
		操作問題與錯誤	相當多。且每次更換建置人員 都需要重新學習	隨著腳本優化會愈來愈少					
_		總成本	數小時至數天	趨近0					

李大化文局中

部署成果:K8s Dashboard

部署IPM與部署IPM_C之時間成本比較

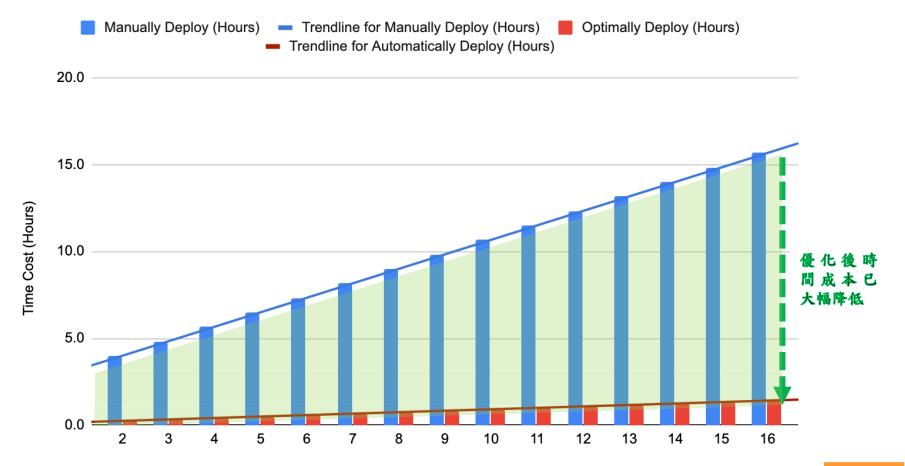
手動部署IPM的時間成本

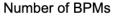
■ 下表為部署一套IPM系統所需的工作項目與對應的手動部署時間成本,我們通常會根據效能需求以決定所需要的主機數量N;根據業務需求以決定所需要的IPM數量M。合計手動部署IPM的時間成本約為30N+50M+50分

鐘 :	工作項目	子項目	手動部署成本(分鐘)	執行次數	總計
	建置環境	 安裝.Net Core 安裝SQL Server Native Client 安裝MATLAB Compiler Runtime 啟動IIS 	30	Ν	30N
	部署程式	 下載主程式 Data Processing Alg Service GUI Parser Service Token Service 設定參數 編輯Config檔 設定ODBC 設定IIS 建立Website 選擇AppPool 指定應用程式根目錄 調整目錄權限 	40 (5種類型的主程式, 部署一個約8分鐘)	M+1 (1個Master與M個Slave)	40M+40
	啟動程式	 檢查相依性服務是否已啟動 啟動IIS Website或IIS App 	10	M+1 (1個Master與M個Slave)	10M+10

採用前述優化部署流程部署IPM_C之時間成本

■ 優化部署流程後,僅需編輯Helm Chart設定檔Values.yaml即可完成所有的部署工作。合計手動部署IPMc的時間成本約為5M+5分鐘:


工作項目	子項目	優化部署流程後的手動佈署時間 成本(分鐘)	執行次數	總計
建置環境	 安裝.Net Core 安裝SQL Server Native Client (x64) 安裝MATLAB Compiler Runtime 啟動IIS 	0 (已包裝成Docker Image)	0	0
部署程式	 下載主程式 Data Processing Alg Service GUI Parser Service Token Service 設定參數 編輯Config檔 設定ODBC 設定IIS 建立Website 選擇AppPool 指定應用程式根目錄 調整目錄權限 	5 (僅需編輯Helm Chart設定檔 Values.yaml,其餘工作已透過 Powershell腳本與shell scripts自動 化處理)	M+1 (1個Master與 M個Slave)	5M+5
啟動程式	 檢查相依性服務是否已啟動 啟動IIS Website或IIS App 	0 (透過Kubernetes自動檢查與啟動)	0	0



部署IPM與IPM_C之部署時間成本比較

- 假如固定使用3台主機(M=3),尚未容器化前,部署2~16個BPM,粗估花費時間約4~16小時(實際時間視操作 人員而定)——部署的數量越多,時間成本將線性提高。
- 而優化後,手動部署IPM_C只剩下修改設定檔(Values.yaml),其他步驟皆自動化處理,可大幅降低時間成本。

結語與展望

結語與展望

■今日分享之內容包含3部分:

- 第1部分:介紹我們團隊所研發之智慧製造平台AMCoT,已經成功應用於一些 製造產業(如半導體、輪圈加工、吹瓶機、航太等);並介紹基於容器技術之新一 代智慧製造平台AMCoT_C。
- ▶ 第2部分:描述我們將容器化智慧預測保養系統(IPM_c)導入面板製造廠之成果。
- ▶ 第3部分:說明我們基於Kubernetes與Docker之IPM_c全廠導入實踐作法與效益。
- ■未來展望:
- 我們團隊所研發之智慧製造服務(AVM、IPM、IYM、IDS等)可協助生產線智慧 化,而基於Kubernetes與Docker,更易於將這些智慧製造服務導入製造業。
- ▶ 我們已完成IPM_c、AVM_c、IYM_c等之開發,未來將持續擴充AMCoT_c之功能。

