° .
 —

The Economics
of Legacy Code

terry@odd-e.com

e

mailto:terry@odd-e.com?subject=

| am Terry Yin
e Work for Odd-e
e EXperienced in soft
® | ove programming
o A father

e Livein Singap

el
P
»
re devefgpment
="

What is Legacy Code?

The Odd-e CSD Classes

EXPERIENCE OF WORKING IN B ‘REAL SCRUM TERAM

ONE WEEK. [INE SPRINT

THE WHOLE (10 FEOPLE! CLASS WORKS AS ONE TERM.

INSTRUCTORS ACT AS PRODLCT OWNER.
SCRUMMASTER AND TECH CORCH

LNLIKE THIS GENTLEMHAN WHO ITERRTES ONLY FOR FLIN ..

ONE WEEK.CEE CLASS

THE TERM ITERATES TO DELIVER MORKING FERTLRES
CONTINLOLUSLY
HLONG WITH THE FLIN

ONE WEEK.CSD CLASS

IN EHCH LS50 CLASS .

ONE WEEK.CSD CLASS

IN EHCH LS50 CLASS .
TEAM CONTINUES TO BEUILD THE SHME FRODLLCT ON THE SHME CODEBRSE.

10

ONE WEEK.C50 CLASS

SOFTHWHARE DEVELOPFMENT IS MOSTLY RBOUT
KNOWLEDGE ACOUISITION AND PRESERUATION

11

'KNDWLEDGE OF THE.SOFTWARE PRODUCT ~

12

Knowledge
acquired by
understanding

PROEBELEM

Knowledge
acquired by

discovering

KNOWLEDGE OF THE-SOFTWARE PRODLUET

13

Preserved in
Executable specs

Preserved in
clean code
matching

PROEBELEM

4 .
business model

KNOWLEDGE OF THE-SOFTWARE PRODLUET

14

LEGHLY LUDE

SOFTHWHRE DEUELOFMENT IS MOSTLY HBEOUT
KNOWLEDGE HLOUISITION HND

Cost and Interest

Teme

16

3 Perspectives

Automated (Unit) Test

Organization

Architecture

17

Legacy Code
and

Automated (Unit) Test

18

Code With No Test

WORKING
EFFECTIVELY
WITH

LEGACY CODE

Michael L. Feathers

19

What is the first thing to do,
when you find yourself in a hole?

20

' Code base

g——_

Legacy code algorithm

~1.ldentity change point
- 2.Find test points

. 3.Break dependencies
i 4.Write tests

Change point

- Close-proximity
inflection point

5.Make changes and refactor

21

Challenge from working with legacy code:
Breaking Dependencies

EFFECTIVELY
WITH

LEGACY CODE

Michaeel L. Feathers

22

Autonomation vs Automation

HEft + B

SHIGEO

Legacy Code
and

Architecture

24

@

High Cohesion, Low Coupling

s (s
< Q

f, ’

But high cohesion has =
higher priority \
CraiggLarman2

3}

High Cohesion

Cost of Not Having
High Cohesion

Compound Interest Formula (including Principal)

Amount Interest Rate (decimal)
A iz P 1 + L ht Time (years)
|| n
Principal Number of times interest

is compounded per year

thecaleulatoreite.com

Compound interest

27

ing

Low Coupl

28

Cost of Not Having

Low Coupling?

29

Microservice

for less-complex systems, the extra
baggage required to manage
microservices reduces productivity

as complexity kicks in,
productivity starts folling

rapidly
/ the decreased coupling of

microservices reduces the
attenuation of productivity

Productivity
Microservice

w

Base Complexity

but remember the skill of the team will
outweigh any monolith/microservice choice

Picture from: https://www.martinfowler.com/

Martin Folwer

30

Legacy Code
and

31

s i
The At& Practice of
The Learning Qrganization
R /’:,

Global optimisation vs.
Local optimisation

Human instinct are often
prone to local optimisation

TBAINKING,
FAST.SLOW

1DACN TR L,

KAHNEMAN

32

@a

PO

PRODPUCT
OWNER

ITEM 1
ITEM 2
ITEM 3
ITEM 4

Conway’s Law

O MPONENT

COMPONENT
o

f

"organizations which design
systems ... are constrained
to produce designs which
are copies of the
communication structures of
these organizations.”

Melvin Conway, 1967

33

https://en.wikipedia.org/wiki/Organizational_structure

Following Conway’s Law
— Component Team

)

! /
/
/
PRODPUCT Q’
OWNER COMP A /oo o o oo |
TEAM : o —
ITEM | 3 : 0o —
ITEM 2
ITEM 3
ITEM 4 COMP B —_—-—Te-
TEAM ;

\————————_——_—————— -_— o s W

Trying to Preserve
knowledge by
organisational
structure

34

Punrhed Paper Tape 254 mm wlde. Asell 7 hit chararter code, Meen Parlty,

Purity (Even)
BiL7

BIt G

Bit S

Bird

Sprocket Hales
Bit=

Bit2

150K 1

2 Y x wv U T E N QP O NMLIKIIHGE FEDTCE A

Representational Gap

35

Business Domain vs.

Solution Domain

gap

Lower representational

Less legacy code

e T

 lessworks (o) [T

36

& Collective Code Ownership Needs
Supporting Practices

@

\ Retfactoring \ - Continvous Integration |

Acknowledgement

“91” Joey Chen

38

